Seguidores

lunes, 20 de junio de 2011

Tsunami Solar (II Parte)

Estas preparado?.... Ya tienes ideado como protegerte de una radiaccion solar?... sabes que son los Tsunamis, Explosiones o Tormentas solares? ... que son los Maximos Solares?

El objetivo del artículo pretende unificar las alertas noticiosas sobre este evento aun no conocido por muchas personas y concientizarlas de que vienen cambios drásticos en el clima y que tenemos que hacer uso de nuestros recursos de una forma moderada y consiente. De orientarnos a un cambio social, político y espiritual. Donde el hombre encuentre elementos donde asirse y ponga en práctica su ingenio y su instinto de sobrevivencia que lo encamine por fin a tomar conciencia por el respeto de los recursos, de la familia y la humanidad en general. Que el dinero y el poder son solo artificios que nos ciegan e impiden una continuidad en este mundo pues nos estamos exterminando solitos simplemente por una inconsciencia colectiva.  






El estado del tiempo en el espacio se convierte en un problema internacional
Representantes de más de 25 de las naciones más avanzadas tecnológicamente se han reunido hoy en Alemania para escuchar sobre un problema que puede ser demasiado grande como para que lo maneje un solo país: las tormentas solares.



Julio 16, 2010: En algunas ocasiones, un problema es tan grande que un país solo no puede manejarlo.
Este es el mensaje que los científicos están comunicando hoy en la reunión del Programa Internacional Viviendo con una Estrella (International Living With a Star o ILWS, en idioma inglés), en Bremen, Alemania, y representantes de más de 25 de las naciones más avanzadas tecnológicamente se han reunido para escuchar lo que tienen que decir.
"El problema son las tormentas solares —determinar cómo predecirlas y qué hacer para protegernos de sus efectos", dice Lika Guhathakurta, quien es la presidente del ILWS, en las oficinas centrales de la NASA. "Necesitamos avanzar en este tema antes de que llegue el siguiente máximo solar, alrededor del año 2013".


El Sol y la Tierra están separados por alrededor de 150 millones de kilómetros (93 millones de millas) —una distancia que podría parecer segura. Pero desde el inicio de la Era Espacial, y especialmente en años recientes, cada vez se entiende más que una distancia de 150 millones de kilómetros no es en realidad tan lejos. Las naves espaciales y los observatorios terrestres han mostrado que la Tierra se encuentra localizada en la atmósfera externa del Sol, abofeteada por vientos solares y golpeada por pedriscas de partículas energéticas. Además, los dos cuerpos están, de hecho, conectados por hilos invisibles de magnetismo. Durante los "eventos de reconexión", que ocurren normalmente varias veces al día, es posible rastrear líneas de fuerza invisibles desde los polos de la Tierra hasta la superficie del Sol.
"La Tierra y el Sol están interconectados. Ya no es posible estudiarlos por separado", dice Guhathakurta.
Hace algunos años, los científicos acuñaron el término "heliofísica" para describir el campo científico emergente que estudia el sistema Sol–Tierra. Como señal de reconocimiento de la importancia del tema, la NASA ha creado la División de Heliofísica, en sus oficinas centrales ubicadas en Washington DC, y las Nacionas Unidas declararon al año 2007 como el "Año Internacional de la Heliofísica" (IHY, por su sigla en idioma inglés), con la esperanza de impulsar la participación mundial en este nuevo campo.
Derecha: Concepto artístico del campo magnético de la Tierra conectándose con el Sol. [Más información]
Predecir la actividad solar es un problema complicado, en muchas formas parecido a la predicción del estado del tiempo en la Tierra, pero multiplicado en dificultad por la complicada física del plasma y el magnetismo del Sol. Sin embargo, realizar predicciones sobre el Sol es sólo la mitad del problema; la otra mitad es la Tierra. La manera en la cual el campo magnético y la atmósfera de nuestro planeta responden a una tormenta solar es un rompecabezas magnetohidrodinámico que los científicos más importantes luchan por entender, empleando incluso la ayuda de las supercomputadoras más poderosas de la Tierra. Por estas razones, se dice comúnmente que la predicción del estado del tiempo en el espacio está atrasada 50 años respecto de su contraparte terrestre.
"Necesitamos más datos; y más ideas", dice Guhathakurta.
Es por ello que, esta semana, ella entregará la presidencia del ILWS al Dr. Ji Wu, de la Academia China de Ciencias. Además de liderar el ILWS, Wu pasará los siguientes dos años sacando provecho de los talentos especiales en el campo de la heliofísica con los cuales cuenta el país más poblado del mundo.
"Tenemos una multitud de científicos y muchas ideas nuevas", dice Wu. "China podrá hacer contribuciones importantes a esta área".
Otra complicación es la gran extensión en volumen. La heliofísica estudia un ambiente que se extiende cientos de millones de kilómetros. Tan solo estar al tanto de todo lo que ocurre es un desafío significativo. La NASA y otras agencias espaciales tienen docenas de naves espaciales dedicadas a esta tarea, pero el volumen en el que están dispersas es enorme.
"Imaginemos intentar monitorizar los océanos de la Tierra con una pequeña cantidad de boyas. Perderíamos mucho. Esa es la situación en la que nos encontramos con el 'océano del espacio'", dice Guhathakurta.
China está a punto de contribuir con una "boya espacial" llamada "KuaFu", cuyo nombre proviene de un gigante de la mitología china que quería capturar al Sol. KuaFu estará localizada en el punto Lagrangiano L1 donde tomará muestras del viento solar que se desplaza corriente arriba respecto de la Tierra.
Derecha: Un informe del año 2008, llevado a cabo por la Academia Nacional de Ciencias, describe las posibles consecuencias de las tormentas solares. [Más información]
"Estamos colocando a KuaFu en un punto estratégico en el espacio", dice Wu. "El viento solar en L1 es un importante dato de entrada para muchos modelos científicos de la interacción Sol–Tierra".
Cuando KuaFu sea lanzada se unirá a una creciente flota internacional de naves espaciales dedicadas a la heliofísica. La NASA, la Agencia Espacial Europea, la Agencia Espacial de la Federación Rusa, la Agencia Espacial Canadiense, la Agencia Espacial Japonesa (JAXA, por su sigla en idioma inglés) y China están todas haciendo contribuciones importantes.
Y justo a tiempo...
Si las predicciones son correctas, el ciclo solar llegará a su máximo en los años cercanos a 2013. Y aunque probablemente no sea el máximo más grande del que se tenga registro, la sociedad humana nunca ha sido más vulnerable. Los elementos básicos de la vida diaria —desde las comunicaciones hasta la predicción del estado del tiempo y los servicios financieros— dependen de los satélites y de la electrónica de alta tecnología. Un informe del año 2008, llevado a cabo por la Academia Nacional de Ciencias, advirtió que una tormenta solar como las que ocurren una vez al siglo podría causar miles de millones de dólares en daños económicos.
Prepararse para un "Katrina solar", impulsar una nueva ciencia, aprovechar el talento de los científicos de todo el mundo: "Estas son sólo algunas de las metas para la reunión de esta semana", dice Guhathakurta.
¿Ambicioso? Sí, pero en heliofísica pensar en grande es algo natural.


Un “tsunami solar” viene hacia la Tierra
Por David Rubia el 3 de Agosto de 2010, 10:43 en Ciencia.

El pasado fin de semana comenzó una actividad eruptiva en el Sol que fue registrada por varios satélites de la NASA, que detectaron un choque de ondas impulsado hacia el exterior. Esta colisión provocó una gran explosión sobre la mancha 1092 y la gran nube llena de partículas cargadas eléctricamente viene directamente a la tierra en forma de un tsunami solar.
Las ondas generadas en el Sol tuvieron un diámetro 50 veces superior al de la tierra antes de que estallara, concentrando gases solares. Al colisionar estas dos ondas se ha generado la nube que viene hacía la tierra que viene cargada electrónicamente, lo cual se conoce como una eyección de masa coronal.

Se espera que llegue durante el día de hoy a la Tierra y choque contra el escudo magnético que protege al planeta, lo que provocará una serie de auroras y luces en ambos polos. Sin embargo, la gran amenaza de este tsunami es el efecto que pueda tener sobre los satélites que están en la órbita de la tierra, que podrían resultar dañados, aunque no se esperan grandes problemas ya que las ondas expulsadas podrían venir a diferentes velocidades, reduciendo así su fuerza.
Estas erupciones se producen cuando inmensas estructuras magnéticas en la atmósfera solar pierden su estabilidad y no pueden ser mantenidas por la atracción gravitatoria. Parece que la primera erupción fue tan grande que cambió los campos magnéticos del Sol.
Estos son los comentarios de la Doctora Lucie Green del Mullard Space Science Laboratory, para quien estos sucesos son muy raros. No obstante algunos astrónomos señalan que el Sol está despertando y que este evento que ahora puede ser muy extraño en tres o cuatro años se podría producir tan frecuentemente que lo tendremos como algo normal.
Así que los amantes de la ciencia y del espacio tendrán que estar pendientes del cielo para poder visualizar este extraño -por el momento- evento y ver qué consecuencias tiene, aunque como comento anteriormente, no se espera que generen grandes problemas en las comunicaciones y servicios que se realizan vía satélite.

Tsunami Solar

Podremos correr el riesgo de un Tsunami Solar?



En el 2010

TSUNAMI SOLAR SE DIRIGE A LA TIERRA 

La NASA detectó el pasado domingo una erupción en la superficie del Sol, que estalló e hizo volar de toneladas de plasma. 
Miércoles 04 de agosto de 2010  EFE | El Universal 
La agencia espacial estadounidense (NASA) advirtió a los exploradores celestes que estén atentos la noche del martes y miércoles ya que debido a una erupción solar causada el pasado domingo es posible que puedan ver una espectacular aurora boreal. 
El laboratorio solar de la NASA, el Solar Dinamics Observatory (SDO, por sus siglas en inglés) detectó el pasado domingo una erupción en la superficie del Sol clase C3, equivalente a un tsunami, que estalló e hizo volar de toneladas de plasma (átomos ionizados) en el espacio. 
En su recorrido por el espacio el plasma se está aproximando a la Tierra y al chocar con los polos norte y sur de la magnetósfera terrestre producirá una luz difusa pero predominante proyectada en la ionosfera terrestre conocida como "aurora boreal". 
La NASA captó múltiples filamentos  de magnetismo moviéndose desde la corona solar, La imagen del SDO captó el hemisferio norte del Sol a mediados de la erupción. 
Según indicó el astrónomo Leon Golub, del Centro Harvard-Smithsoniano para Astrofísica (CFA), la erupción "se dirige derecha a nosotros, y se espera que llegue temprano el día 4 de agosto. Es la primera gran erupción dirigida hacia la Tierra en mucho tiempo". 
La erupción, llamada eyección de masa coronal, fue recogida por el observatorio solar que la NASA puso en marcha en febrero y ha proporcionado una serie de imágenes de gran definición en una variedad de longitudes de onda. 
"Tenemos una hermosa vista de la erupción. Y podría haber nuevas vistas más hermosa de venir, si se desencadenaran las auroras", dijo Golub. 
Las auroras normalmente sólo son visibles en las altas latitudes. Sin embargo, durante una tormenta geomagnética puede que se generen auroras que iluminen el cielo en latitudes más bajas. 
El Sol pasa por ciclos regulares de actividad y cada 11 años de promedio se produce un periodo de actividad máximo. Su último máximo solar fue en 2001, con lo que esta erupción demuestra que el Sol está despertando de nuevo.  



sábado, 12 de marzo de 2011

TSUNAMI & MAREMOTO 2PARTE


Maremotos y tsunamis en el pasado

Se conservan muchas descripciones de olas catastróficas en la Antigüedad, especialmente en la zona mediterránea.

Isla Santorini (1650 a. C.)

 

Algunos autores afirman que la leyenda de la Atlántida está basada en la dramática desaparición de la civilización Minoica que habitaba en Creta en el siglo XVI a. C. Según esta hipótesis, las olas que generó la explosión de la isla volcánica de Santorini destruyeron al completo la ciudad de Teras, que se situaba en ella y que era el principal puerto comercial de los minoicos. Dichas olas habrían llegado a Creta con 100 o 150 m de altura, asolando puertos importantes de la costa norte de la isla, como los de Cnosos. Supuestamente, gran parte de su flota quedó destruida y sus cultivos malogrados por el agua de mar y la nube de cenizas. Los años de hambruna que siguieron debilitaron al gobierno central, y la repentina debilidad de los antaño poderosos cretenses los dejó a merced de las invasiones. La explosión de Santorini pudo ser muy superior a la del Krakatoa.

Lisboa (1755)

 

El denominado terremoto de Lisboa de 1755, ocurrido el 1 de noviembre de dicho año,[3] y al que se ha atribuido una magnitud de 9 en la escala de Richter (no comprobada ya que no existían sismógrafos en la época), tuvo su epicentro en la falla Azores-Gibraltar, a 37° de latitud Norte y 10° de longitud Oeste (a 800 km al suroeste de la punta sur de Portugal). Además de destruir Lisboa y hacer temblar el suelo hasta Alemania,[4] el terremoto produjo un gran maremoto que afectó a todas las costas atlánticas. Entre treinta minutos y una hora después de producirse el sismo, olas de entre 6 y 20 metros sobre el puerto de Lisboa y sobre ciudades del suroeste de la península Ibérica mataron a millares de personas y destruyeron poblaciones. Más de un millar de personas perecieron solamente en Ayamonte y otras tantas en Cádiz; numerosas poblaciones en el Algarve resultaron destruidas y las costas de Marruecos y Huelva quedaron gravemente afectadas. Antes de la llegada de las enormes olas, las aguas del estuario del Tajo se retiraron hacia el mar, mostrando mercancías y cascos de barcos olvidados que yacían en el lecho del puerto.[5] [6]Martinica, Barbados, América del Sur y Finlandia.

Krakatoa (1883)

 

En 27 de agosto de 1883 a las diez y cinco (hora local),[8] la descomunal explosión del Krakatoa, que hizo desaparecer al citado volcán junto con aproximadamente el 45% de la isla que lo albergaba, produjo una ola de entre 15 y 35 metros de altura, según las zonas,[9] que acabó con la vida de aproximadamente 20.000 personas.[10]
La unión de magma oscuro con magma claro en el centro del volcán fue lo que originó dicha explosión. Pero no sólo las olas mataron ese día. Enormes coladas piroclásticas viajaron incluso sobre el fondo marino y emergieron en las costas más cercanas de Java y Sumatra, haciendo hervir el agua y arrasando todo lo que encontraban a su paso. Asimismo, la explosión emitió a la estratosfera gran cantidad de aerosoles, que provocaron una bajada global de las temperaturas. Además, hubo una serie de erupciones que volvieron a formar un volcán, que recibió el nombre de Anak Krakatoa, es decir, ‘el hijo del Krakatoa’.
Mesina (1908)

En la madrugada del 28 de diciembre de 1908[11] se produjo un terrible terremoto en las regiones de Sicilia y de Calabria, en el sur de Italia. Fue acompañado de un maremoto que arrasó completamente la ciudad de Mesina, en Sicilia.[12] La ciudad quedó totalmente destruida y tuvo que ser levantada de nuevo en el mismo lugar. Se calcula que murieron cerca de 70.000 personas en la catástrofe (200.000 según estimaciones de la época).[3] La ciudad contaba entonces con unos 150.000 habitantes. También la ciudad de Regio de Calabria, situada al otro lado del estrecho de Mesina, sufrió importantes consecuencias. Fallecieron unas 15.000 personas, sobre una población total de 45.000 habitantes.

Océano Pacífico (1946)

Un terremoto en el océano Pacífico provocó un maremoto que acabó con 165 vidas en Hawái y Alaska. Este maremoto hizo que los estados de la zona del Pacífico creasen un sistema de alertas, que entró en funcionamiento en 1949.
Alaska (1958)
El 9 de julio de 1958, en la bahía Lituya, al noreste del golfo de Alaska, un fuerte sismo, de 8,3 grados en la escala de Richter, hizo que se derrumbara prácticamente una montaña entera, generando una pared de agua que se elevó sobre los 520 metros, convirtiéndose en la ola más grande de la que se tenga registro, llegando a calificarse el suceso de megatsunami.

Valdivia (1960)


Vista de una calle en el centro de Valdivia tras el maremoto del 22 de mayo de 1960
El terremoto de Valdivia (también llamado el Gran Terremoto de Chile), ocurrido el 22 de mayo de 1960, es el sismo de mayor intensidad registrado por sismógrafos. Se produjo a las 07:11 UTC (al comenzar el día, según la hora local), tuvo una magnitud de 9,5 en la escala de Richter y de XI a XII en la escala de Mercalli, y afectó al sur de Chile. Su epicentro se localizó en Valdivia, a los 39,5º de latitud sur y a 74,5º de longitud oeste; el hipocentro se localizó a 60 km de profundidad, aproximadamente 700 km al sur de Santiago. El sismo causó un maremoto que se propagó por el océano Pacífico y devastó Hilo a 10.000 km del epicentro, como también las regiones costeras de Sudamérica. El número total de víctimas fatales causadas por la combinación de terremoto-maremoto se estima en 3.000.
En los minutos posteriores un maremoto arrasó lo poco que quedaba en pie. El mar se recogió por algunos minutos y luego una gran ola se levantó acabando a su paso con casas, animales, puentes, botes y, por supuesto, muchas vidas humanas. Cuando el mar se recogió varios metros, la gente pensó que el peligro había pasado y en vez de alejarse caminaron hacia las playas, recogiendo pescados, moluscos y otros residuos marinos. Para el momento en que se percataron de la gran ola, ya era demasiado tarde.
Como consecuencia del terremoto se originaron maremotos que arrasaron las costas del Japón (142 muertes y daños por 50 millones de dólares), Hawái (61 fallecimientos y 75 millones de dólares en daños), Filipinas (32 víctimas y desaparecidos). La costa oeste de Estados Unidos también registró un maremoto, que provocó daños por más de medio millón de dólares estadounidenses.

Tumaco (1979)

Un terremoto importante de magnitud 7,9 grados Richter ocurrió a las 07:59:4,3 (UTC) el 12 de diciembre1979 a lo largo de la costa pacífica de Colombia y el Ecuador. El terremoto y el maremoto asociado fueron responsables de la destrucción de por lo menos seis aldeas de pesca y de la muerte de centenares de personas en el departamento de Nariño en Colombia. El terremoto se sintió en Bogotá, Pereira, Cali, Popayán, Buenaventura y otras ciudades y aldeas importantes en Colombia, y en Guayaquil, Esmeraldas, Quito y otras partes de Ecuador. El maremoto de Tumaco causó, al romper contra la costa, gran destrucción en la ciudad de Tumaco y las poblaciones de El Charco, San Juan, Mosquera y Salahonda en el Pacífico colombiano. Este fenómeno dejó un saldo de 259 muertos, 798 heridos y 95 desaparecidos. 

Nicaragua (1992)

Un terremoto ocurrido en las costas del pacífico de Nicaragua, de entre 7,2 y 7,8 grados en la escala de Richter, el 1 de septiembre de 1992, provocó un maremoto que azotó gran parte de la costa del pacífico de este país, provocando más de 170 muertos y afectando a más de 40.000 personas, en al menos una veintena de comunidades, entre ellas San Juan del Sur.

Hokkaido (1993)

 

Animación del maremoto de 2004 en Indonesia.
Un tsunami imprevisto ocurrió a lo largo de la costa de Hokkaido en Japón, como consecuencia de un terremoto, el 12 de julio de 1993. Como resultado, 202 personas de la pequeña isla de Okushiri perdieron la vida, y centenares resultaron heridas. Este maremoto provocó que algunas oficinas cayeran en quiebra, el tsunami adquirió una altura de 31 metros, pero sólo atacó a esta isla.

Océano Índico (2004)

Hasta la fecha, el maremoto más devastador ocurrió el 26 de diciembre de 2004 en el océano Índico, con un número de víctimas directamente atribuidas al tsunami de un cuarto de millón de personas. Las zonas más afectadas fueron Indonesia y Tailandia, aunque los efectos destructores alcanzaron zonas situadas a miles de kilómetros: Malasia, Bangladés, India, Sri Lanka, las Maldivas e incluso Somalia, en el este de África. Esto dio lugar a la mayor catástrofe natural ocurrida desde el Krakatoa, en parte debido a la falta de sistemas de alerta temprana en la zona, quizás como consecuencia de la poca frecuencia de este tipo de sucesos en esta región. El terremoto fue de 9,1 grados: el tercero más poderoso tras el terremoto de Alaska (9,2) y de Valdivia (Chile) de 1960 (9,5). En Banda Aceh formó una pared de agua de 20 o 30 m de altura penetrando en la isla 5 o 6 km desde la costa al interior; solo en la isla de Sumatra murieron 228.440 personas o más. Sucesivas olas llegaron a Tailandia, con olas de 15 metros que mataron a 5.388 personas; en la India murieron 10.744 personas y en Sri Lanka, hubo 30.959 víctimas. Este tremendo tsunami fue debido además de a su gran magnitud (9,3),a que el epicentro estuvo solo a 9 km de profundidad, y la rotura de la placa tectónica fue a 1.600 km de longitud (600 km más que en el terremoto de Chile de 1960).

Chile (2010)


Efectos del tsunami en Chile el año 2010.
El 27 de febrero de 2010 a las 03:34 (hora local) sucedió un terremoto de magnitud 8,8 Mw con epicentro en Cobquecura, 400 kilómetros al suroeste de Santiago, originando un maremoto en la costa de las regiones del Maule y del Bío Bío, en número total de muertos por el tsunami es desconocido, se cree que son cientos. Constitución, Iloca, Pelluhue, Curanipe,Talcahuano y Dichato fueron las más afectadas con el maremoto; otras ciudades afectadas al interior del país: Talca (capital de la séptima región), Curicó, Hualañé, Licantén; la costa de la sexta región, Pichilemu, en la quinta región Santo Domingo, Llo Lleo, Isla Juan Fernández. Desde la sexta a la octava región, fueron asoladas primero a causa del terremoto seguido por el tsunami.
Debido a un problema de comunicación generado por el terremoto y confusiones por parte de los organismos encargados de enviar la alarma de tsunami, no se alertó a la población acerca del evento que ocurriría 35 minutos después del terremoto. Olas de hasta 15 metros de altura [cita requerida] impactaron en el archipiélago de Juan Fernández, a 650 kilómetros de la costa de Chile continental y dejando a varias víctimas y más de una docena de desaparecidos. 19 días después el recuento oficial es de 239 víctimas fatales [cita requerida] y un número indeterminado de desaparecidos. Los damnificados llegan a los 2 millones de personas. Una extensión de 500 km de la costa chilena fue arrasada y el movimiento telúrico se sintió con características de terremoto desde La Serena, 450 kilómetros al norte de Santiago, hasta La Isla de Chiloé, 1000 kilómetros al sur de la capital. Los daños causados por el terremoto fueron mucho menores que los daños causados por el tsunami.

Japón (2011)


Tiempo de viaje del tsunami causado por el terremoto del Japón de 2011.
El 11 de marzo de 2011 un terremoto magnitud 8,9 Mw golpea el Japón.
Tras el sismo se generó una alerta de tsunami para la costa pacífica del Japón y otros países, incluidos Nueva Zelanda, Australia, Rusia, Guam, Filipinas, Indonesia, Papúa Nueva Guinea, Nauru, Hawái, islas Marianas del Norte, Estados Unidos, Taiwán, América Central, México y las costas de América del Sur, especialmente Colombia, Ecuador, Perú y Chile.[13] La alerta de tsunami emitida por el Japón fue la más grave en su escala local de alerta, lo que implica que se esperaba una ola de 10 metros de altura. Una ola de 0,5 metro golpeó la costa norte del Japón. [14] La agencia de noticias Kyodo informó que un tsunami de 4 m de altura había golpeado la Prefectura de Iwate en el Japón. Se observó un tsunami de 10 metros de altura en el aeropuerto de Sendai, en la prefectura de Miyagi,[15] que quedó inundado, con olas que barrieron coches y edificios a medida que se adentraban en tierra.[16]
Se habrían detectado, horas más tarde, alrededor de 105 réplicas del terremoto, una alerta máxima nuclear y 1.000 veces más radiación de lo que producía el Japón mismo debido a los incendios ocasionados en una planta atómica. Se temió más tarde una posible fuga radiactiva.
Finalmente el tsunami azotó las costas de Hawái y toda la costa sudamericana con daños mínimos gracias a los sistemas de alerta temprana liderados por el Centro de alerta de Tsunamis del Pacífico.

Sistemas de alerta

Muchas ciudades alrededor del Pacífico, sobre todo en México, Perú, Japón, Ecuador, Hawái y Chileinstitutos sismológicos de diferentes partes del mundo se dedican a la previsión de maremotos, y la evolución de éstos es monitorizada por satélites. El primer sistema, bastante rudimentario, para alertar de la llegada de un maremoto fue puesto a prueba en Hawái en los años veinte. Posteriormente se desarrollaron sistemas más avanzados debido a los maremotos del 1 de abril de 1946 y el 23 de mayo de 1960, que causaron una gran destrucción en Hilo (Hawái). Los Estados Unidos crearon el Centro de alerta de tsunamis del Pacífico en 1949, que pasó a formar parte de una red mundial de datos y prevención en 1965. disponen de sistemas de alarma y planes de evacuación en caso de un maremoto peligroso. Diversos
http://bits.wikimedia.org/skins-1.17/common/images/magnify-clip.png
Señal que avisa del peligro de maremoto, en la península de Seward (Alaska).
Uno de los sistemas para la prevención de maremotos es el proyecto CREST (Consolidated Reporting of Earthquakes and Seaquakes) (Información Consolidada sobre Terremotos y Maremotos), que es utilizado en la costa oeste estadounidense (Cascadia), en Alaska y en Hawái por el Servicio Geológico de los Estados Unidos, la National Oceanic and Atmospheric Administration (la Administración Nacional Oceánica y Atmosférica de EE. UU.), la red sismográfica del nordeste del Pacífico y otras tres redes sísmicas universitarias.
La predicción de maremotos sigue siendo poco precisa. Aunque se puede calcular el epicentro de un gran terremoto subacuático y el tiempo que puede tardar en llegar un maremoto, es casi imposible saber si ha habido grandes movimientos del suelo marino, que son los que producen maremotos. Como resultado de todo esto, es muy común que se produzcan alarmas falsas. Además, ninguno de estos sistemas sirve de protección contra un maremoto imprevisto.
A pesar de todo, los sistemas de alerta no son eficaces en todos los casos. En ocasiones el terremoto generador puede tener su epicentro muy cerca de la costa, por lo que el lapso entre el sismo y la llegada de la ola será muy reducido. En este caso, las consecuencias son devastadoras, debido a que no se cuenta con tiempo suficiente para evacuar la zona y el terremoto por sí mismo ya ha generado una cierta destrucción y caos previos, lo que hace que resulte muy difícil organizar una evacuación ordenada. Éste fue el caso del maremoto del año 2004 pues, aun contando con un sistema adecuado de alerta en el océano Índico, dicha zona no hubiese escapado del desastre.

TSUNAMI & MAREMOTO

¿QUE ES UN TSUNAMI O MAREMOTO?


TSUNAMI

Un tsunami[1] (del japonés tsu (): ‘puerto’ o ‘bahía’, y nami (): ‘ola’; literalmente significa ‘ola de puerto’). También recibe el nombre de maremoto; es un evento complejo que involucra un grupo de olas de gran energía y de tamaño variable que se producen cuando algún fenómeno extraordinario desplaza verticalmente una gran masa de agua. Este tipo de olas remueven una cantidad de agua muy superior a las olas superficiales producidas por el viento. Se calcula que el 90 por ciento de estos fenómenos son provocados por terremotos, en cuyo caso reciben el nombre más correcto y preciso de «maremotos tectónicos».
La energía de un tsunami depende de su altura (amplitud de la onda) y de su velocidad. La energía total descargada sobre una zona costera también dependerá de la cantidad de picos que lleve el tren de ondas (en el maremoto del océano Índico de 2004 hubo 7 picos enormes,gigantes y muy anchos). Es frecuente que un tsunami que viaja grandes distancias, disminuya la altura de sus olas, pero mantenga su velocidad, siendo una masa de agua de poca altura que arrasa con todo a su paso hacia el interior.
Antes, el término tsunami también sirvió para referirse a las olas producidas por huracanes y temporales que, como los maremotos, podían entrar tierra adentro, pero éstas no dejaban de ser olas superficiales producidas por el viento, aunque se trata aquí de un viento excepcionalmente poderoso.
Tampoco se deben confundir con la ola producida por la marea conocida como macareo. Éste es un fenómeno regular y mucho más lento, aunque en algunos lugares estrechos y de fuerte desnivel pueden generarse fuertes corrientes.

Otros tipos de maremotos

Existen otros mecanismos generadores de maremotos menos corrientes que también pueden producirse por erupciones volcánicas, deslizamientos de tierra, meteoritos o explosiones submarinas. Estos fenómenos pueden producir olas enormes, mucho más altas que las de los maremotos corrientes. Se trata de los llamados megamaremotos, término que, si bien no es científico, puede usarse de forma poco rigurosa para referirse a los maremotos generados por causas no tectónicas. De todas estas causas alternativas, la más común es la de los deslizamientos de tierra producidos por erupciones volcánicas explosivas, que pueden hundir islas o montañas enteras en el mar en cuestión de segundos. También existe la posibilidad de desprendimientos naturales tanto en la superficie como debajo de ella. Este tipo de maremotos difieren drásticamente de los maremotos tectónicos.
En primer lugar, la cantidad de energía que interviene. Está el terremoto del océano Índico de 2004, con una energía desarrollada de unos 32.000 MT. Solo una pequeña fracción de ésta se traspasará al maremoto. Por el contrario, un ejemplo clásico de megamaremoto sería la explosión del volcán Krakatoa, cuya erupción generó una energía de 300 MT. Sin embargo, se midió una altitud en las olas de hasta 50 m, muy superior a la de las medidas por los maremotos del océano Índico. La razón de estas diferencias estriba en varios factores. Por una parte, el mayor rendimiento en la generación de las olas por parte de este tipo de fenómenos, menos energéticos pero que transmiten gran parte de su energía al mar. En un seísmo (o sismo), la mayor parte de la energía se invierte en mover las placas. Pero, aun así, la energía de los maremotos tectónicos sigue siendo mucho mayor que la de los megamaremotos. Otra de las causas es el hecho de que un maremoto tectónico distribuye su energía a lo largo de una superficie de agua mucho mayor, mientras que los megamaremotos parten de un suceso muy puntual y localizado. En muchos casos, los megamaremotos también sufren una mayor dispersión geométrica, debido justamente a la extrema localización del fenómeno. Además, suelen producirse en aguas relativamente poco profundas de la plataforma continental. El resultado es una ola con mucha energía en amplitud superficial, pero de poca profundidad y menor velocidad. Este tipo de fenómenos son increíblemente destructivos en las costas cercanas al desastre, pero se diluyen con rapidez. Esa disipación de la energía no sólo se da por una mayor dispersión geométrica, sino también porque no suelen ser olas profundas, lo cual conlleva turbulencias entre la parte que oscila y la que no. Eso comporta que su energía disminuya bastante durante el trayecto.
El ejemplo típico, y más cinematográfico, de megamaremoto es el causado por la caída de un meteorito en el océano. De ocurrir tal cosa, se producirían ondas curvas de gran amplitud inicial, bastante superficiales, que sí tendrían dispersión geométrica y disipación por turbulencia, por lo que, a grandes distancias, quizá los efectos no serían tan dañinos. Una vez más los efectos estarían localizados, sobre todo, en las zonas cercanas al impacto. El efecto es exactamente el mismo que el de lanzar una piedra a un estanque. Evidentemente, si el meteorito fuera lo suficientemente grande, daría igual cuán alejado se encontrara el continente del impacto, pues las olas lo arrasarían de todas formas con una energía inimaginable. Maremotos apocalípticos de esa magnitud debieron producirse hace 65 millones de años cuando un meteorito cayó en la actual península de Yucatán. Este mecanismo generador es, sin duda, el más raro de todos; de hecho, no se tienen registros históricos de ninguna ola causada por un impacto.
Algunos geólogos especulan que un megamaremoto podría producirse en un futuro próximo (en términos geológicos) cuando se produzca un deslizamiento en el volcán de la parte inferior de la isla de La Palma, en las islas Canarias (cumbre Vieja). Sin embargo, aunque existe esa posibilidad (de hecho algunos valles de Canarias, como el de Güímar (Tenerife) o el del Golfo (El Hierro) se formaron por episodios geológicos de este tipo), no parece que eso pueda ocurrir a corto plazo, sino dentro de cientos o miles de años. Esta especulación ha causado una cierta polémica, siendo tema de discusión entre distintos geólogos. Un maremoto es un peligro para el lugar en que se encuentre o se origine, pero también este fenómeno tiene ventajas hacia nuestro planeta.